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WAVE OPTICS 
 

Syllabus 
Unit Learning Units Lecture 

Hours 
I Interference of light: (Problem) 

A) Division of Wavefront: Introduction, Conditions for the 

interference of light, Interference of light by division of wavefront 

and amplitude, Phase change on reflection- Stokes’ treatment, 

Fresnel’s Bi-Prism-Determination of Wavelength of Light. 

B) Division of Amplitude: Cosine law - colours in thin films, 

Newton’s rings in reflected light -Theory and experiment - 

Determination of wavelength of monochromatic light, Michelson 

interferometer and determination of wavelength. 

12  

II Diffraction of light(Problem) 

A) Fraunhofer Class: Distinction between Fresnel and Fraunhofer 

diffraction, Fraunhofer diffraction at a single slit, double slit and N-

slits (No Derivation for N-Slits), Determination of wavelength of 

light using a diffraction grating, Resolving power of grating,  

B) Fresnel’s Class: Fresnel’s half-period zones, Zone plate, 

comparison of zone plate with a convex lens. 

12  

III 
Polarisation of light(Problem) 

A) Polarized light: Methods of production of plane-polarized light 

- Polarisation by reflection (Brewster’s law), Malus law, Double 

refraction, Nicol prism, Nicol prism as polarizer and analyzer, 

Quarter wave plate, Half wave plate 

B) Types and production of polarized Light: 

Plane, Circularly and Elliptically polarized light-Production and 

detection, Optical activity, Laurent’s half shade polarimeter: 

determination of the specific rotation 

12  
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IV A) Aberrations: (Problem) 

Monochromatic aberrations - Spherical aberration, Methods of 

minimizing spherical aberration, Coma& Astigmatism -

minimization methods, Chromatic aberration-the achromatic 

doublet; Achromatism for two lenses (i) in contact and (ii) separated 

by a distance. 

B) Fibre Optics:(No Problem) 

Fibre optics: Introduction to Fibers, different types of fibers, rays and 

modes in an optical fiber, Principles of fiber communication 

(qualitative treatment only), Advantages of fiber optic 

communication. 

12  

V Lasers and Holography (No Problem) 
A) Lasers: Introduction, Spontaneous emission, stimulated 

emission, Population Inversion, Laser principle, Einstein 

coefficients, Types of lasers-He-Ne laser, Ruby laser, Applications 

of lasers;  

B) Holography: Basic principle of holography, Applications of 

holography 

12  

 
Text BOOKS: 

 BSc Physics, Vol.2, Telugu Akademy, Hyderabad 

 Unified Physics Vol.II Optics, Jai PrakashNath & Co.Ltd., Meerut., Meerut 

REFERENCE BOOKS: 
1. A Text Book of Optics-N Subramanyam, L Brijlal, S.Chand &Co. 
2. Optics-Murugesan, S. Chand & Co. 
3. Optics, F.A. Jenkins and H.G. White, McGraw-Hill 
4. Optics, Ajoy Ghatak, Tata McGraw-Hill. 
5. Introduction of Lasers – Avadhanulu, S. Chand &Co. 
6. Principles of Optics- BK Mathur, Gopala Printing Press,1995 
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UNIT I            INTERFERENCE 
Interference: when two light waves of same frequency and having constant phase difference, coincide 

in space and time, there is a modification in the intensity of light. This modification in the intensity of 

light due to superposition of two waves is called interference. 

 The interference pattern in which the position of maxima and minima of intensity of light 

remains constant is called sustained interference. 

Principle of superposition: when two light waves arrive at a point in space simultaneously, the net wave 

disturbance at that point and at any given time is the vector sum of all the wave disturbances at that 

point at that particular time. This is called the principle of superposition. 

Suppose the two waves are of the same frequency but are of different amplitudes, say a and b 

where a>b. if they reach a certain point in phase with each other as in fig(a), then the resultant 

displacement or amplitude is equal to the sum of the two amplitudes i.e., (a+b). The two waves 

reinforce each other and are said to produce constructive interference. 

However, as shown in fig (b) if the two waves reach  radians or 1800 out of phase with each 

other, then the resultant amplitude is equal to the difference of the two amplitudes .i.e.,(a-b). If a=b 

then the resultant amplitude is zero as shown in fig (c). The two waves neutralize each other and are 

said to produce destructive interference. 

  

 

Conditions necessary for permanent interference: 

1) The two sources must emit continuous waves of the same wavelength and time-period. 

2)      The waves emitted by the two sources must start either exactly in phase or with a 

             constant phase difference. This can be possible only if the two sources are derived from 

             a single parent sources. 
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3) The two coherent sources must be close to each other. 

4) The two coherent sources must be extremely small. 

5) The amplitudes of the two waves should preferably be equal. 

6) The two coherent sources should emit monochromatic light. 

7) The two waves must be propagated along the same direction to get coincidence. 
 

Coherent sources: Two sources are said to be coherent if they emit light waves of same 

frequency, nearly same amplitude and are always in phase with each other. 

We can produce coherent waves in two ways:  

1. Division of wave front  

2. Division of amplitude  

1) Division of wave front: when light from a source is allowed to pass through two slits, the original 

wave front gets divided into two. These two slits will act as coherent sources and emit coherent waves. 

2) Division of amplitude: The original light beam is divided by partial reflection from a glass plate or 

at the surface of a thin film. The refracted part and the reflected part are coherent.  
 

 

Analytical treatment of Interference:  

   Consider two waves of same frequency and amplitudes a1 and a2 respectively. Let y1 and y2 be the 

displacements of two waves  

 Suppose y1 = a1Sin ωt 

 and  y2 = a2Sin (ωt + Φ) where Φ is the phase difference between the two waves 

at the point under consideration. 

According to principle of superposition, the resultant displacement of the particle is given by, 

 y =  y1 + y2 = a1Sin ωt + a2Sin (ωt + Φ) 

         = (a1+ a2CosΦ) Sinωt + a2SinΦ Cos ωt  ---- (1) 

let     a1 + a2CosΦ = A Cosδ    --- (2)     and                      

a2SinΦ = A Sinδ     --- (3) 

Substitute eq(2) and eq(3) in eq(1)  then, 

y = A CosδSinωt + A Sinδ Cos ωt = A Sin (ωt + δ) 

Where, A is the amplitude of the resultant disturbance at that point. 

Intensity of the resultant disturbance, I = A2 = (a1+ a2CosΦ)2 + a2
2 Sin2Φ 

                = a1
2 + a2

2 + 2 a1a2CosΦ 

              = a2 + a2 + 2a2CosΦ     if a1= a2 = a 
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                                    = 2a2 [1 + CosΦ] = 2a2 . 2 Cos2(Φ/2) 

                = 4a2 Cos2(Φ/2) --- (4) 

Case (1): - Constructive Interference 

 When the phase difference Φ = 0, 2π, 4π, ------, 2πn   then, 

  I = A2 = a1
2 + a2

2 + 2 a1a2 = (a1 + a2)2 

 This is called the constructive interference in which the resultant intensity is maximum. 

  If  a1 = a2 , then I = A2 = 4a1
2 

Case (2): - Destructive interference 

 When the phase difference Φ = π, 3π, ------, (2n + 1) π   then, 

  I = A2 = a1
2 + a2

2 - 2 a1a2 = (a1 - a2)2 

 This is called the destructive interference in which the resultant intensity is minimum. 

 If  a1 = a2 , then I = 0           

 
Phase change on reflection: 

 According to Stoke’s, when a light wave is reflected at the surface of an optically denser 

medium it suffers a phase change of ‘π’ i.e., a path difference of / 2 , No phase change is introduced 

if the reflection takes place from the surface of rarer medium. 

 Let us consider a wave AO of light of amplitude ‘a’ be incident at point O on the boundary 

M1M2 of the media I and II. Medium - II is optically denser than medium – I. The wave is partly 

reflected along OB and partly transmitted. Let ’r’ be the reflection co-efficient and ‘t’ be transmission 

co-efficient. Now the amplitude of reflected wave will be ‘ar’ while that of transmitted wave is ‘at’  

 Now suppose that the directions of reflected and transmitted rays are reversed at shown in Fig 

(B). By doing so we should have a wave ‘OA’ of original amplitude ‘a’ 

 On reversing OB we get a reflected wave OA of amplitude (arx r) ‘ar2’ and transmitted wave 

OD of amplitude art. Let r’ and t’ be the r and t  be the fractions of amplitude reflected and 

transmitted when the ray is travelling from denser to rarer medium. Now on reversing CO we get a 

reflected wave OD of amplitude atr  and transmitted wave of amplitude ( at t ) att . As there was 

no wave originally along OD hence OD should be zero. 
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0art atr   ⟹ 0r r  ⟹ r r   ------------(1) 

Along OA there should be a wave of amplitude ‘a’ 

2

2

2

1

1

ar att a

r tt

tt r

 

  

  

 

The -ve sign in Eq (1) indicates a phase change ‘π’ either at reflection from rarer to denser medium 

or at reflection from denser medium to rarer medium. 

Fresnel’s biprism: 

A Fresnel Biprism is a thin double prism placed base to base and have very small refracting angle 

(0.5°). This is equivalent to a single prism with one of its angles nearly 179° and other two of 0.5° 

each. 

 The interference is observed by the division of wave front. Monochromatic light through 

a narrow-slit S falls on biprism, which divides it into two components. One of these components is 

refracted from upper portion of biprism and appears to come from S1 where the other one refracted 

through lower portion and appears to come from S2. Thus, S1 and S2 act as two virtual coherent sources 

formed from the original source. Light waves arising from S1and S2 interfere in the shaded region and 

interference fringes are formed which can be observed on the screen. 

 

Application of Fresnel's Biprism 

Fresnel biprism can be used to determine the wavelength of a light source (monochromatic), 

thickness of a thin transparent sheet/ thin film, refractive index of medium etc. 

Determination of wave length of light 

As expression for fringe width is  
D

d

    
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Biprism can be used to determine the wavelength of given monochromatic light using the 

expression. 
d

D

    

Experimental Arrangement:  

 Light from the monochromatic source is made to fall on a thin slit mounted vertically on a rigid 

optical bench fitted with a scale. The biprism and the screen (in this case an eye piece) are also 

mounted vertically. The eye piece can be moved in the plane perpendicular to the axis of bench using 

a  micrometre-based translation stage. 

(i) Measurement of fringe width: To get β, fringes are first observed in the field of view of the 

microscope. The vertical wire of the eyepiece is made to coincide with one of the fringes and screw 

of micrometer is moved sideways and the number of fringes is counted. 

β =Distance moved / number of fringes passed 

(ii) Measurement of D: This distance between source and eyepiece is directly measured on the optical 

bench scale. 

(iii) Determination of d: To determine the separation between the two virtual sources ( d ), a 

convex lens of short focal length is introduced between the biprism and the eyepiece, keeping the 

distance between the slit and eyepiece to be more than four times the focal length of lens. The lens is 

moved along the length of the bench to a position where two images of slits are seen in the plane of 

cross wires of eye piece. The distance between these two images of the slit is measured by setting the 

vertical cross wire successively on each of images and recording the two positions of the cross wire 

using micrometre. Let this separation be d1. Now the lens is moved such that for another position of 

the lens, again two images of the slit are seen on the eyepiece. Let d2 be the separation between these 

two images. 

 

1d u

d v
             (1) 
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2d v

d u





               (2) 

Since these two positions of lens are conjugate, the separation between the virtual source ‘d ' is 

given by using equations 1 and 2 as 

1 2d d d  where d1 and d2 are the distance between S1 and S2 for two positions of the lenses. 

 

Colors of Thin films (Reflected light): (Cosine Law) 

 Colors of thin films like soap bubbles, oil layers on water etc., are a consequence of 

interference of light beams reflected from the films. The two coherent beams are produced by the 

division of the amplitude of the incident light beam. A film is said to be thin when its thickness is 

about 5000 A0. 

             Let GH and G1H1 be the two surfaces of a  

transparent film of uniform thickness t and 

refractive index μ as shown in fig. Suppose a ray 

AB of monochromatic light be incident on its 

upper surface. This ray is partially reflected along 

BR and refracted along BC. After one reflection at 

C, we obtain the ray CD. After refraction at D, 

the ray finally emerges out along DR1 in air. Obviously, DR1 is parallel to BR. Our aim is to find out 

the effective path difference between the rays BR and DR1. For this purpose, we draw a normal DE 

on BR. 

 The path difference Δ is given by, Δ = μ (BC + CD) – BE --- (1) 

 From fig, CF / BC = Cos r or  t / BC = Cos r 

  BC = CD = t / Cos r  --- (2) 

 To calculate BE, we first find BD which is equal to (BF + FD). We consider triangle BFC 

 BF / FC = tan r or BF / t = tan r 

  BF = t tan r 

 Now BD = BF + FD = 2BF = 2t tan r (   BF = FD) 

From triangle BED, BE / BD = Sin i 

or  BE = BD Sin i = 2t tan r Sin i 

we know that 
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 Sin i / Sin r = μ or  Sin i = μ Sin r 

 BE = 2t tan r ( μ Sin r) 

or BE = 2 μt tan r Sin r   --- (3) 

 from eqs.(2) and eqs.(3), substituting the values of AB and BE in eq(1). We get 

 Δ = μ ( 2t / Cos r) – 2 μt tan r Sin r 

    = 2μt   -  2μt Sin2 r 
     Cos r           Cos r 

   =  2μt    [ 1 – Sin2 r ]   =   2μt    Cos2 r 
      Cos r           Cos r 

   = 2μt Cos r    --- (4) 

For the net optical path difference, we have to consider the phase change of π occurred while the first 

reflected ray BR reflects from denser to rarer medium. i.e., the first reflected ray experiences an extra 

path difference of λ/2. 

 Net optical path difference = 2μt Cos r ± λ/2 --- (5) 

Condition for bright fringe: 2μt Cos r ± λ/2 = nλ 

Condition for dark fringe: 2μt Cos r ± λ/2 = (2n + 1)λ /2 

Colors in thin films 

These colors are due to interference between light waves reflected from the top and the bottom 

surfaces of thin films. When white light is incident on a thin film, the film appears coloured and the 

color depends upon the thickness of the film and also the angle of incidence of the light.As a result, 

we observe colors in the order of violet, blue....... etc., If the angle of refraction is changed, we will 

get different colors for different angles. 

 

Newton’s Rings: 
 

 A Plano-convex lens with its convex surface is placed on a plane glass plate; an air film of 

gradually increasing thickness is formed between the two. The thickness of the film at the point of 

contact is zero. If monochromatic light is used to fall normally and the film is viewed in reflected 

light, alternate dark and bright rings concentrated around the point of contact between the lens and 

glass plate are seen. This phenomenon was first described by Newton hence the rings are known as 

Newton’s rings. 
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Experimental arrangement: 

S is an extended monochromatic source whose light 

is made parallel by lens L1. This light falls on a glass 

plate G at 450 and is therefore reflected normally on 

a Plano- convex lens L2 placed on a flat glass plate 

P. Light is reflected upwards from the upper and 

lower faces of the wedge-shaped air film enclosed 

between the curved surface of L2 and P. These two 

reflected rays interfere and give rise  

to an interference pattern in the form of circular rings.The circularity of fringes is due to the fact that 

air film is symmetrical about the point of contact O. The diameter of these rings can be measured with 

the help of a traveling microscope M placed vertically above L2. 

Explanation of formation of Newton’s rings: 

The formation of Newton’s rings can be explained 

with the help of fig. AB is a monochromatic ray of 

light, which falls on the system. A part is reflected at 

C, which goes out in the form of ray 1 without any 

phase reversal. The other ray is refracted along CD. 

At point D it is again reflected and goes out in the 

form of ray 2 with a phase reversal of Π. The reflected 

rays 1 and 2 are in a position to produce  

interference. As the rings are observed in reflected light, the path difference between them is (2μt Cos 

r + λ/2). 

For air film μ = 1 and for normal incident r = 0. 

 Path difference = 2t + λ/2 

At the point of contact t = 0 

  Path difference = λ/2 

Which is the condition of minimum intensity. Thus the central spot is dark. 

For nth maximum we have, 2t + λ/2 = nλ  --- (1) 
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Calculation of diameter of bright and dark rings:- 

Let LOL1 be the lens placed on a glass plate AB. The 

curved surface LOL1 is the part of spherical surface with 

center at C. Let R be the radius of curvature and r be the 

radius of Newton’s rings corresponding to the constant 

film thickness t. 

 
 

From eq(1)  2t = (2n – 1) λ/2  --- (2)  for the bright ring where n =1,2,3....... 

and  2t = nλ    --- (3)  for dark ring  where n = 0,1,2,3..... 

From the property of the circle, NP x NQ = NO x ND 

Substitute the values,    r x r =  t (2R – t) 

             = 2Rt – t2 

       2Rt [    t2 is negligible] 

         r2 = 2Rt  ==> t = r2 / 2R --- (4) 

 

For a bright ring, 

Substitute (4) in (2) ==>  2r2 / 2R = (2n – 1) λ/2 

         or      r2 = R (2n - 1) λ/2 

        r = R (2n -1) /2  

         or      d =  2 R (2n -1)    --- (5) 

                                             or      d  (2n -1)  

The diameter (or radius) of the bright rings is proportional to the square root of odd natural numbers. 
 

Similarly for a dark ring, 

Substitute (4) in (3) ==>  2r2 / 2R = nλ 

      or     r2 = n λ R 

               r =  n R  

       or    d =  2 n R  

       or    d  n  

The diameter (or radius) of the dark rings is proportional to the square root of natural numbers. 
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Note : The fringe width decreases with the order of the fringe and fringes get closer with increase in 

their order. 

Determination of wavelength ( λ ) of sodium light using Newton’s rings:- 

The diameter of nth dark ring is, dn
2 =4n λ R    --- (i) 

The diameter of  ( n + m )th dark ring is, dn+m
2 =4(n + m ) λ R --- (ii) 

Equation (ii) – equation (i)         dn+m
2 - dn

2 = 4m λ R 

 
2 2

4
n m nd d

mR
  
  

Similar results can be obtained by taking bright rings. 

 The diameters dn and dn+m corresponding to nth and (n+m)th dark rings are noted with 

traveling microscope and radius of curvature of the lens is measured with a spherometer (by using 

the formula, 
2

6 2

l h
R

h
    where, l – distance between two legs of the spherometer and h – difference 

of the readings of the spherometer when it is placed on the lens as well as when placed on the plane 

surface). So the wavelength of the light can be found out. 

Determination of Refractive index () of a liquid:- If there is a air film between the plano –

convex lens and the plane glass plate. The diameter of nth and (n + m)th dark ring are measured with 

traveling microscope. Then dn+m
2 - dn

2 = 4m λ R  --- (iii) 

If the air film is replaced with liquid, the diameter of nth and (n + m)th dark rings are 

  (dI
n+m)2  - (dI

n)2 = 4m λ R /      --- (iv) 

Substitute eq(iii) in eq(iv) we get, 

      (dI
n+m)2  - (dI

n)2 =  ( dn+m
2 - dn

2 ) /  

  ==>  
2 2

2 2' '
n m n

n m n

d d

d d
 







    --- (v) 

Therefore, from the above equation we can calculate the refractive index of a liquid. 

Uses of Newton’s Rings – we can calculate the refractive index () of liquid, Radius of curvature 

(R) of given lens and wavelength (λ) of light. 
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Describe the construction of Michelson interferometer and explain its working. How is 

wavelength of monochromatic light determined with it? 

Michelson's interferometer consists of highly polished mirrors 1M , and 2M which are at right angles 

to each other. G1 and G2 are two optically fiat glass plates of same thickness and of same material, 

placed parallel to each other. These plates are inclined at an angle of 45° with the mirrors M1 and M2. 

The face of G, towards G2 is semi silvered. The mirror-M1 is mounted on a carriage which can be 

moved forward or backward. The mirrors M1 and M2 are provided with three levelling screws with 

the help which they can be tilted about horizontal and vertical axes. A telescope 'T' receives the 

reflected light from the mirrors M1 and M2 Working Light from a monochromatic source 'St after 

being rendered parallel by a collimating lens L falls on the semi silvered glass plate G1. It is divided 

into two parts, one being reflected from the semi-silvered surface of G1 [ray (1)] which travels towards 

M1, and the other being transmitted giving rise to the ray (2), which travels towards M2. The two rays 

fall normally on M1 and M2 and are reflected along their original paths. The reflected rays again meet 

at G1 and enter the telescope T. The two rays are originally derived from the same single beam hence 

they can produce interference fringes in the field of view of the telescope. Ray No. 1 passes through 

G1 twice whereas ray No. 2 does not do so even once. Hence the two paths OM1 and OM2 are not 

equal in the absence of G2. To equalise the paths, a glass plate G2 of same thickness and of same 

material as that of G1, is introduced in the path of ray No.2. Hence this is called as compensating plate. 

Looking in the direction M1 from E one observes M1, and a virtual image 2M   of M2. Thus, the 

interference fringes may be conceded as to be formed by light reflected from the surface of M1 and 

2M   respectively. Thus, the arrangement is equivalent to air film enclosed between the reflecting 

surfaces M1 and 2M  . The interference fringes may be straight, circular, parabolic, etc. depending upon 

path difference and the angle between mirrors  1M  and 2M  .  
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Determination of wavelength of mono-chromatic light: First of all, the Michelson's interferometer 

is set for circular fringes with central bright spot. If t be the thickness of the air film enclosed between 

the two mirrors and n the order of the spot obtained, the as for normal incidence cos r = 1, we have  

2
2

t n
    

If now M1 is moved λ/2 away from 2M  , then an additional path difference of λ will be introduced any 

hence (n+1)th bright spot appears at the centre of the field. Thus, each time when M1 moves through 

a distance λ/2, next bright spot appears at the centre of the field. Let N be the number of fringes that 

cross the centre of field when the mirror M1 is oved from initial position 1x to a final position 2x , then, 

2 1
2 1

2( )

2

x x
N x x

N

  
     

The difference ( 2 1x x ) is measured with micrometer screw and N is counted. The experiment is 

repeated at several times and the mean values of λ is obtained.  

 

Explain the types of fringes formed in Michelson’s interferometer. 

1) when mirror M1 and the virtual mirror 2
IM  (image of M2) are parallel, circular fringes are 

formed. 

2) When M1 and 2
IM coincide, the path difference is zero & the field of view is perfectly dark. 

3) when M1 and 2
IM are inclined, the air film enclosed is wedge-shaped & straight-line fringes 

are observed. 

 If M1 intersect  2
IM  in the middle, the fringes are perfectly straight.  
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 In other positions, the shape of the fringes is as shown in fig. They are curved & are always 

concave towards the thin edge of the wedge. 

 

 

 

 

Explain the uses of Michelson's interferometer. 

Michelson's interferometer has been used for,  

1. In the determination of wavelength of monochromatic source of light, 

2. To determine the difference between the two neighborhood wavelengths or resolution of the 

spectral lines.  

3. In the determination of refractive index and thickness of various thin transparent materials.  

4. For the measurement of the standard meter in terms of the wavelength of light etc. 

1. Determination wavelength of mono-chromatic light: First, the Michelson's interferometer is set 

for circular fringes with central bright spot. Let t be the thickness of the air film enclosed between 

the two mirrorsand n he the order of the spot obtained, for normal incidence cos r = 1, we have  

2
2

t n
    

If now M1 is moved λ/2 away from 2M  , then an additional path difference of λ will be introduced and 

hence (n+1)th bright spot appears at the centre of the field, Thus, each timewhen M1 moves through a 

distance λ/2, next bright spot appears at the centre of the field. Let N be the number of fringes that 

cross the centre of field when the mirror M1 is moved from initial position x1 to a final position x2, 

then, 

2 12( )x x

N
 
  

The difference ( 2 1x x ) is measured with micrometer screw and N is counted. The experiment is 

repeated at several times and the mean value of λis obtained.  
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UNIT-II              
Diffraction of light 

 The bending of light around the edges of an obstacle or the encroachment of light within the 

geometrical shadow area is called diffraction. 

For diffraction to occur the size of the 

object must be of the order of the 

wavelength of the incident waves; when 

the wavelength (of light is ~ 5 x 10-5 cm) 

is much smaller than the size of the 

object, diffraction is ordinarily not 

observed, and the object casts a sharp 

shadow. Diffraction pattern consists of 

bright and dark bands like the interference 

pattern and the bands thus formed are  

known as diffraction bands or fringes. 

The correct interpretation of diffraction of light was given by Fresnel based on the wave theory of 

light. 

 Diffraction phenomena are a part of our common experience. The luminous border that 

surrounds the profile of a mountain just before the sun rises behind it, the light streaks that one sees 

while looking at a strong source of light with half shut eyes and the colour spectra that observes while 

viewing a distant source of light through a fine piece of cloth are all examples of diffraction effects. 

Differences between Interference and diffraction: - 

1) In the phenomenon of interference, the interaction takes place between two separate wave fronts 

originating from the two coherent sources while in the phenomenon of diffraction the interaction 

takes place between the secondary wavelets originating from different points of the exposed parts 

of the same wave front. 

2) In the interference pattern the region of minimum intensity are usually almost perfectly dark while 

it is not so in diffraction pattern. 

3) The width of the fringes in interference may or may not be equal or uniform. While in diffraction 

pattern fringe width of various fringes are never equal. 

4) In an interference pattern all the maxima are of same intensity but in a diffraction pattern they are 

of varying intensity. 
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There are two types of diffraction. 

(i) Fresnel diffraction and (ii) Fraunhofer diffraction. 

Fresnel diffraction:- In this type, the source, or the screen or both are at finite distances from the 

aperture or obstacle causing diffraction. In this type of no lenses are used. 

 

Fraunhofer diffraction: - In this type, the source, and the screen on which the pattern is observed are 

at infinite distance from the aperture or obstacle causing diffraction. In this type lenses are used. The 

incoming light is rendered parallel with a lens and the diffracted beam is focused on the screen with 

another lens. 
 

Out of these two types, Fraunhofer diffraction is simple to understand. We can easily produce 

Fraunhofer diffraction in the laboratory using a spectrometer. 
 

 

Diffraction at a single slit :- 

A slit is a rectangular aperture whose length is large compared to its breadth. Let ‘e’ be the width of 

slit AB. S is a source of light. Lenses L1 and L2 are used for collimation and convergence purposes. P 

is the point image of S surrounded by alternate maxima and minima. The un-diffracted and direct light 

is converged at P with maximum intensity. 
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 Let us consider secondary wavelets from AB move in a direction OP1 inclined at an angle θ 

with respect to un-deviated light. The point P1 is of the minimum intensity depending upon the path 

difference between the secondary waves originating from the corresponding points of the wavefront. 

To find out the intensity at P1, draw a normal AC on BP. The path difference between secondary 

wavelets from A and B in direction ‘θ’ 

  = BC = AB Sin θ = e Sin θ 

and corresponding phase difference = 2   e Sin 
  

Let us consider that the width of the slit is divided into N equal parts and the amplitude of the 

wave from each part is a. The phase difference between any two consecutive waves from these points 

would be, 

1 1
(  phase) = ( sin )  (say)

2
total e d

n n



  

From the method of vector addition, the resultant amplitude is, 

sin 2 sin( sin / )

sin 2 sin( sin / )

nd e
R a a

d e n

  
  

   

                            =
sin

sin
a

n




                  {Where α = π e Sin θ/ λ} 

sin
a

n




                      [α /n is very small] 

     = na Sin α / α = A Sin α / α  {where na=A} 
 

Intensity,  I = R2 = A2 (Sin α / α)2                      -------------> (1) 

Principle maxima: The expression for resultant amplitude R can be written in ascending powers 

of α as,    
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 R = A  [ α – α3+ α5 – α7 + - - - -] 
         α           3!    5!     7! 
 

        = A [ 1 – α2+ α4 – α6 + - - - -] 
                      3!    5!     7! 

If the –Ve terms vanish, the value of R will be maximum i.e., α = 0. 

 α = π e Sin θ / λ = 0      or  Sin θ = 0 or  θ = 0. 

The maximum value of R is A and the intensity is proportional to A2. 

 
Minimum Intensity Position: The intensity will be minimum when Sin α = 0. The values of α which 

satisfy this equation are, α = ± π, ± 2π, ± 3π, - - - - - - 
 

Or π e Sin θ / λ = ± mπ      or      e Sin θ = ± mλ  where m = 1,2,3. . . . .etc 

We obtain minimum intensity on either side of the principal maxima. 

Position of secondary maxima 

Differentiate Eq (1) w.r.t α and equal to zero 

2
2

2

sin
0

dI d
A

d d


  

  
   

   ⟹ 2
2

2sin ( cos sin )
0A

   
 


  

we have two solutions :  

sin α =0 and  

α cos α-sin α=0 

sin α =0 gives the value of α for which the 

intensity is zero. The position of secondary 

maxima is given byα cos α-sin α=0 ⟹ α cos 

α = sin α 

 α = Tan α 

Let us assume that 

y = α and y =  Tan α 

The value of α can be obtained graphically by plotting the curve y =  Tan α and a straight line y = α. 

The points of intersection of st.line with curves gives the values of α 
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Intensity distribution graph:- 

 

 

Fraunhofer Diffraction due to double slit 

  Consider two parallel slits AB and CD each of width ‘e’ and separated by a distance‘d’ and 

perpendicular to plane of the paper.  The diffraction pattern produced by two slits is a product of 

interference pattern produced by two slits separated by a distance (e+d) and the single slit diffraction.  

L is a collecting lens and XY is a screen perpendicular to the plane of the paper. P is a point on the 

screen such that OP is perpendicular to the screen. All the secondary waves travelling in a direction 

parallel to OP come to focus at P. Therefore, P corresponds to the position of the central bright 

maximum or principal maximum. 

  Let S1 and S2 be two effective point sources placed at the middle of the two slits AB and CD. 

Each source (S1 & S2) emits secondary wavelets of amplitude A
௦௜௡ఈ

ఈ
  where 𝛼 =

గ௘௦௜௡ఏ

ఒ
.   

The secondary wavelets travelling at an angle 

 with the normal are focused at a point P1 on 

the screen. The point P1 is of the minimum 

intensity or maximum intensity depending 

upon the path difference between the 

secondary waves originating from the 

corresponding points of the wavefronts of 

amplitude A
௦௜௡ఈ

ఈ
 and a phase difference 

δ(say). 
 

  To calculate δ draw a perpendicular S1K on S2K. The path difference between the wavelets 

from S1 and S2 in the direction .  
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   =S2K 

   = (e+d) sin 

 ∴ Phase difference δ = 
ଶగ

ఒ
 (e+d) sin 

 The resultant amplitude at P1 due to the wavelets from S1 and S2 can be calculated by using vector 

addition theorem. 

  From Figure   

  (OH)2 = (OG)2+(GH)2+2(OG)(OH) cosδ 

 

2 2
2 sin sin sin sin

2 cos
A A A A

R
    

   
              
        

 

2
2 sin

[1 1 2cos ]
A

R
 


    
   

 

2
2 sin

[2 2cos ]
A

R
 


   
   

 

2
2 sin

2[1 cos ]
A

R
 


   
   

 

2
2 2sin

2[1 2cos 1]
2

A
R

 


    
   

 

2
2 2sin

2[2cos ]
2

A
R

 


   
      

⟹ 
 

2
2 2sin

4 cos
2

A
R

 


   
   

 

2 2
2 2

2

sin
4 cos ( )sin

A
R e d

  
 

      
⟹  

2 2
2 2

2

sin
4 cos

A
R

 



 

  where ( )sine d
 


   ………………..(2) 

 The resultant intensity at point P is given by 

            
2 2

2 2
2

4 sin
cos

A
I R

 


   …..    (3) 

 Eq (3) shows the resultant intensity distribution is a product of two terms: 

 (1) The diffraction pattern produced by a single slit of width ‘e’ is represented by the two point 

sources A2(sinα/α)2 

 (2) cos2β represents the interference pattern produced by the two point sources separated by a 

distance e+d 
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  If the slit width is very small then the variation of the term (sinα/α)2 may be neglected and the 

resultant distribution is equal to the interference pattern produced in the Young’s double slit 

experiment.  i.e., I = 4A2 

 Position of maxima and minima:  

 The interference maxima occurs when cos β =1 or β = ± n = 0, 1, 2, 3,…….   (or)                

 (e+d) sin = ± n𝜆 where n = 0,1,2,3,……… 

 The position of minima occurs when sinα = 0 (α ≠ 0) and cos β = 0 

α = ± m = , 2, 3, ………     (or)          e sin = ± m𝜆 

β = /2, 3/2, 5/2,……… = (2m+1) /2    (or) (e+d) sin = ± (2m+1)𝜆/2 

 Position of secondary maxima 

 The position of secondary maxima occurs when: 

α = 3/2, 5/2, 7/2 ……… = (2n+1) /2   where n = 1,2,3,…….  

 

 Intensity distribution of Fraunhofer diffraction by two slits, (a) variation of intensity with α, (b) 

variation of intensity with β and (c) variation of intensity due to both α and β 

 

Diffraction grating:  An arrangement which essentially consists of a large number of equidistant slits 

is known as a diffraction grating; the corresponding diffraction pattern is known as the grating 

spectrum. The grating spectrum provides us with an easily obtainable experimental set up for 
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determination of wavelengths. A good quality grating requires a large number of slits (typically about 

30,000 per inch) 

  Transmission gratings are plane and are ruled on glass surfaces. Refraction gratings may be 

plane or concave and are ruled on polished metal surfaces. The ruled lines acts as opaque and the spaces 

between ruled lines acts as slits. 

Commercial gratings are produced by taking the cast of an actual grating on a transparent film 

like cellulose acetate. This transparent film is mounted between two glass plates and are using as a 

commercial grating. 

Plane transmission grating: -  

  Let a plane transmission grating MN consisting of N slits. Let AB be the slit width ‘e’ and BD 

be an opaque portion of width d, then (e+d) is known as grating element. XY is the screen placed 

perpendicular to the plane of the paper. A parallel beam of light of wavelength λ is incident normally 

on the grating and each slit sends secondary wavelets in all directions. The secondary wavelets 

travelling in the same direction of incident light will come to focus at a point P on the screen and will 

be a central maximum. 

  

Secondary waves 

travelling in a direction 

inclined at an angle  with 

the direction of the 

incident light. These 

waves reach point P1 on 

passing through the 

convex lens in different 

phases. As a result dark 

and bright bands on both 

sides of central maximum 

are obtained. The wavelets 

processing from all directions in a slit along the direction  are equivalent to a single wave  of amplitude 

(Asinα/α) starting from the middle point of slit where α = π e Sin θ / λ. 
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  If the slits are N, then we get N diffracted waves, each from the middle points of the slits. The 

path difference between two consecutive slits is (e+d) sin . Phase difference between two consecutive 

waves δ = 
ଶగ

ఒ
 (e+d) sin and is constant, It is 2β 

∴
ଶగ

ఒ
 (e+d) sin = 2β ………….. (1) 

By the method of vector addition of amplitudes, the direction  will be  

sin sin

sin

A N
R

 
 

  

22
2 sin sin

sin

A N
I R

 
 

       
   

 

The factor 
2

sinA 


 
 
 

gives the distribution of intensity due to single slit while 
2

sin

sin

N


 
 
 

gives the 

distribution of intensity as combined effects of all the slits. 

Intensity distribution 

Principle maxima: 

The intensity would be maximum when sin  =0 

(or) β= ± n  where n = 0,1,2,3….. 

At the same time sin Nβ = 0, so that the factor (sin Nβ/sinβ) becomes indeterminate. Applying the 

Hospital’s rule 

(sin )
sin

lim lim
sin (sin )

n n

d
N

N d
d

d

   


 
 


 

  

cos
lim

cosn

N N
N

 




   

Hence,     
2

2sin
lim

sinn

N
N

 




 
 

 
 

The resultant intensity is 
sinA 


 
 
 

N2. The maxima are most intense and are called as principle 

maxima. 

The maximum are obtained for  
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  β = ± n   (or) ( )sine d n
  


     (or ) (e+d) sin  = ± nλ 

  where n = 0,1,2,3……. 

For  n = 0 corresponds zero order maximum 

For n = 1,2……..etc., obtain first, second ..etc., principal maxima 

± sing shows that there are two principal maxima of the same order lying on either side of zero order 

maximum. 

For minima: 

Sin Nβ = 0   but sin β ≠0 

Nβ = ± m 

( )sinN e d m
  


    

( )sinN e d m     

where m has all integral values except 0,N,2N, …….nN. Minima are adjacent principal maxima. 

Secondary maxima 

The intensity of secondary maxima is obtained as follows: 

   0
dI

d
  

2

2

sin sin cos sin sin cos
.2

sin

dI A N N N N

d

     
   

               
 = 0 

 cos sin sin cosN N N     = 0  N tan β = tan Nβ 

The roots of this equation other than those for which β = ± n give the positions of secondary maxima. 

To find out the value of (sin2Nβ/sin2β) from equations N tan β = tan Nβ 

From the fig 

2 2
sin

cot

N
N

N





  
2 2

2 2 2 2

sin

sin ( cot ) sin

N N

N X


  


  

= 
2

2 2 2sin cos

N

N  
 

 

        = 
2

2 2 2 2 2sin cos sin sin

N

N      
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        = 
2

2 21 ( 1)sin

N

N  
 

        = Intensity of secondary maxima/Intensity of principal maxima 

        = 
2 2

1

1 ( 1)sinN  
 

As the no. of slits increases in grating, relative intensity of secondary maxima with respect to first 

prinicipal maximum decreases. If N is very large there are no more secondary maxima. 

Intensity distribution 

 

Dispersive power and resolving powers of a grating: 

Dispersive power: It is defined as the rate of change of angle of diffraction of light with wavelength. 

Mathematically dispersive power is represented by dθ/dλ. 

 We know that the condition for primary maxima is, 

  (e + d) Sinθ = nλ   --- (1) 

where, θ is the angle of diffraction for which nth  primary maxima is produced. 

Differentiating eq(1) on bothsides, we get 

  (e + d) Cosθdθ = n.dλ   

==>  dθ/dλ = n / (e + d) Cosθ  --- (2) 

        Dispersive power = n / (e + d) Cosθ 

The value of angular separation is given by, 

  dθ = n dλ / (e + d) Cosθ  --- (3) 

from eq(3) we can conclude that, the angular seperation 

1) depends directly on n ( the order of seperation) 

2) is inversely proportional to grating element 

3) is inversely proportional to Cosθ. 
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Resolving power of a grating: It is the ability of an instrument to show two very close objects as 

separate is called its resolving power. 

 The resolving power of a grating is defined as the ratio of the wavelength of a spectral line to 

the least difference in wavelength of the next line, which can just be seen as separate. 

Rayleigh’s criterion for limit of resolution:- 

 When light from a distant point source and diffracted by a circular opening, is focused by a 

lens not as a geometrical point but as a disc of finite radius surrounded by one or two faint bright and 

dark rings are obtained. 

 If light from two closely situated point sources is focused by a lens then two such like 

diffraction patterns are produced. The practical criterion for the limit of resolution of two close 

diffraction patterns was first suggested by Rayleigh and is known as Rayleigh’s criterion for 

resolution. According to this criterion, two point sources are just resolved if the central maximum of 

the diffraction pattern of one source just falls on the first minimum of the other as shown in fig. In the 

fig., the intensities of individual patterns are shown by dotted lines but the solid line in each case 

indicates the resultant intensity of the two patterns. 

 

In fig(a) the two patterns are well resolved because there is a marked decrease in the intensity of light 

in between the centers of the two patterns. In fig(b), the two patterns are just resolved because the 

central maximum of one just falls on the 1st minimum of the other. The decrease in intensity in between 

the centers of the two patterns is just enough to show them as separate. The patterns shown in fig(c) 

are not resolved because they are two close to each other. The resultant intensity curve is quite smooth 

without any dip. 

 One of the important properties of a diffraction grating is its ability to separate spectrum lines, 

which have nearly the same wavelength. 

Explanation: 
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 A light source having two wavelengths λ and λ + dλ is normally incident on the  

grating surface. Let P1 be nth principal 

maximum of wavelength λ in the direction 

θn and P2 be the nth principal maximum of 

wavelength λ + dλ in the direction θn+ dθn 

shown in fig. 

According to Rayleigh criterion these 

two spectral lines are said to be just 

resolved when the position of P2 falls on   

the first minimum of P1 and vice versa. 

The nth principal maximum of λ in the direction of θnis : 

  (e + d ) sin θn= nλ                          ------------ (1) 

The first minimum adjacent to nth principal maximum of λ in the direction of θn + dθn is : 

  N (e + d ) sin (θn+ dθn)= mλ                          ------------ (2) 

The first minimum adjacent to nth principal maximum of λ in the direction of θn + dθn can be 

obtained by substituting the value m = (nN +1) in Eq.(2) 

The first minimum of λ in the direction of θn + dθnis 

  N (e + d ) sin (θn+ dθn)= (nN +1)λ     ------------------- (3) 

The nth principal maximum of λ + dλ in the direction of θn + dθn from eq (1) 

  (e + d ) sin (θn+ dθn)= n(λ+dλ)   -----------------(4) 

Multiply eq (4) with N 

  N(e + d ) sin (θn+ dθn)= nN(λ+dλ)  --------------(5) 

From eq (3) and (5) 

  (nN+1) λ = nN(λ+dλ) 

  λ = nNdλ 

R = λ/dλ = nN 

This equation is called resolving power of grating. 
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Fresnel’s assumptions 

Fresnel in 1815, combined the Huygens principle of wavelet and the principle of interference to 

explain the bending of light around obstacles and the rectilinear propagation of light. 

1. According to Huygens’ principle, each point of a wavefront (wavefront is a locus of points in a 

medium that are vibrating in same phase) is a source of secondary disturbance and wavelets coming 

from these points spread out in all directions with the speed of light. The envelope of these waves 

constitutes the next wavelet. 

2. According to Fresnel, a wavefront can be divided into many strips or zones called Fresnel zones of 

small area. The resultant effect at any point will depend on the combined effect of all the secondary 

waves coming from various zones. 

3. The effect at a point due to any zone depends on 

distance of the point from the zone.  

4. The effect will also depend on the obliquity 

(inclination) of the point with reference to the 

zone under consideration. 

 

 
 
Fresnel’s half period zones 
ABCD is a plane wave front of 

monochromatic light of 

wavelength λ. The diagram 

shows the plane wavefront as 

perpendicular to plane of the 

paper. Consider a point P at a 

distance b from the wave front 

at which amplitude due to the 

wave is to be found. To find the resultant amplitude at P due to entire wavefront, Fresnel assumed the 

wavefront to be divided into a number of concentric half period zones.  

Fresnel’s half period zones: 



30 
 

With P as centre and with 𝑀1𝑃= (𝑏+ 𝜆/2), 𝑀2𝑃= (𝑏+ 2𝜆/2),….. as radii, a series of concentric spheres 

are drawn on the wavefront. These spheres intersect the wavefront in concentric circles. These circles 

or zones are of radii OM1, OM2,….on the wavefront with O as centre. 

The secondary waves from any two consecutive zones reach the point P with a path difference of 𝜆/2 

or a time period of 𝑇/2 . Hence these zones are called half period zones. The area of the circle OM1 

is called first half period zone. The area between the circles of OM2 and OM1 is called second half 

period zone and so on. The area between the nth and (n – 1)th circle is called the nth half period zone. 

To find the radius of a half period zone: 

In the diagram, from the right angled triangle OM1P, 

2 2 2 2
1 1 ( )

2
OM M P OP b b


      

2
2 2

1 ( 2 )
2 4

OM b b b
 

    (or) 1OM b  (neglecting 𝜆2/4 as b ≫λ) 

1
OM b is the radius of first half period zone. 

The radius of the second half period zone is 

2 2 2 2
2 2

2
( ) ( ) ( )

2
OM M P OP b b


      Thus 2 2OM b  

Similarly, the radius of the nth half period zone is 2 2( )
2

n
OMn b b


    

nOM nb  

Thus, the radii of 1st, 2nd, …… half period zones are b , 2b ,…. nb  

Therefore, the radii of the zones are proportional to the square root of natural numbers. 

Zone plate  

A zone plate is a specially constructed screen such that light is obstructed from every alternate zone. 

The correctness of Fresnel’s method in dividing a wavefront into half period zones can be verified 

with the help of zone plate. 

A zone plate is constructed by drawing concentric circles on a white paper such that radii are 

proportional to the square root of the natural numbers. The odd numbered zones (i.e., 1st, 3rd, 5th …) 

are covered with black ink and a reduced photograph is taken.  
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The negative of the photograph appears is as 

shown in Fig. (a). The negative shows odd 

zones are transparent to incident light and 

even zones will cut off light. This is a 

positive zone plate. If odd zones are opaque 

and the even zones are transparent then it is 

a negative zone plate. Fig. (b) 

 

Differences between Zone plate and convex lens 

Zone Plate Convex lens 

Focal length of a zone plate is 
2

1

n

n

f r


  Focal length of lens is

1 1 1

u v f
   

f depends on λ and show chromatic aberration. 

Forms real image. 

f depends on λ and show chromatic aberration. 

Forms real image. 

It has multiple foci. If (2p -1) is the 
number of half period elements in 

each zone
2

(2 1)
n

p

r
f

p n



 

It has single focus.
1 2

1 1 1
( 1)( )n

f R R
    

All the waves reaching the image point 

through consecutive transparent zones have a 

path difference of λ. 

All waves reaching the image point have same 

optical path. 

f violet > f red f violet < f red 

Intensity of image is less Intensity of image is greater. 
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UNIT III - Polarization 

Polarisation: 

The one-sideness of light is called polarisation. The light, which has acquired the property of one-

sideness, is called polarised light. Natural or un polarised light consists of vibrations of electric vector 

taking place in all transverse directions with random orientation. Such a light may be called 

symmetrical light. The plane in which vibrations take place is known as the plane of vibration. The 

plane, which is ┴r to plane of vibration is known as the plane of polarisation. Light waves are transverse 

waves. Ordinary eye cannot detect the polarisation. We can represent unpolarised light as follows. 

 

The amplitudes of the electric vectors can be resolved into two mutually ┴r directions. They may be 
taken as,  
x- component : A Cosθ1 + A Cos θ2 + A Cosθ3 + ------- 

y- component : A Sinθ1 + A Sin θ2 + A Sinθ3 + ------- 

i.e., Natural light consists of two kinds of 

vibrations only at right angles to each other. 

One in the plane of the paper (double headed 

arrows) and the other ┴r to the plane of the 

paper (dots). 

If A is the amplitude of the 

unpolarised light, Am is the amplitude of the 

plane polarised light, then intensity of the plane polarised light is given by, I = A2 Cos2 θ = Im Cos2 θ  

-- Malus law. 

Plane polarised light: When the amplitude of the electric vector changes but the orientation remains 

constant, then the path traced by the electric vector is a straight line and the light is said to be plane 

polarised. 
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Circularly polarised light: When the amplitude of the electric vector of light remains constant but the 

orientation changes, then the path traced by the electric vector is a circle and the light is said to be 

circularly polarised. 

Elliptically polarised light: When the amplitude of the electric vector and the orientation are changing, 

then the path traced by the electric vector is a ellipse and the light is said to be elliptically polarised. 

 

Plane polarised light can be produced by the following three methods 

i) By reflection   

(ii) By refraction   

(iii) By double refraction 

 

Polarization by reflection: - The simplest way of producing a plane polarised light is by 

reflection. Malus discovered that when ordinary light is reflected from the surface of a transparent 

medium like glass or water it becomes partially polarised. The degree of polarisation changes with 

angle of incidence. At a particular angle of incidence, the reflected light has the greatest percentage of 

polarised light. This angle of incidence is known as angle of polarisation. 

 Let a beam of unpolarised light incident on a  

glass surface CD as shown in figure. Incident 

beam consists of two vibrations at right angles 

to each other (i)Vibrations that are ┴r to the 

plane of incidence (dot components) (ii) 

Vibrations Parallel to the plane of incidence 

(arrow components). For all angles of the 

incidence both reflected and refracted rays are 

partially polarised. But when the light is  

incident at the polarising angle, then none of the arrow component is reflected. So the reflected ray 

contains only dot components i.e., the reflected ray is completely plane- polarised. The refracted ray is 

a mixture of arrow and dot components. 

Brewster’s Law: The tangent of the angle of polarisation (p) is numerically equal to the 

refractive index (μ) of the medium. i.e.,  μ = tan p 
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 He also proved that the reflected and refracted  

  rays are ┴r to each other. 

Let a beam of unpolarised light be incident on a glass 

surface at polarising angle p as shown in fig. (The 

polarising angle for air – glass is 570 ). A part of the 

incident light is reflected while a part is refracted. 

Let r be the angle of refraction.  

From Brewster’s law,   μ = tan p  -- (1) 

From Snell’e law,  μ = Sin p / Sin r -- (2) 

From (1) and (2)   

tan p = Sin p / Sin r ==> Sin p / Cos p = Sin p / Sin r 

    Sin r = Cos p = Sin (90 – p)  ==> r = 90 – p   or  r + p = 900 

   The reflected and refracted rays are at right angles to each other. 

 
Malus Law 
 

Malus’ law states that the intensity of plane-polarized light that passes through an analyzer varies as 

the square of the cosine of the angle between the plane of the polarizer and the transmission axes of 

the analyzer. The law helps us quantitatively verify the nature of polarized light.  

Point 1 – When Unpolarized light is incident on an ideal polarizer the intensity of the transmitted light 

is exactly half that of the incident unpolarized light no matter how the polarizing axis is oriented. 

Point 2 – An ideal polarizing filter passes 100% of incident unpolarized light, which is polarized in 

the direction of the filter’s (Polarizer) Polarizing axis. 

From point (1) and point (2) we can assume 2
0 cosI I    

 
The average value of I (< I >): 
 
We know 

2
0 cosI I    

2 1
cos

2
    

  
Which satisfies point (2) mentioned above. 
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To show point (1), let us consider ϕ = 0 
 
That implies cos2ϕ = 1 
 
I = I0 
Double refraction: 

When a ray of light is refracted by a crystal of calcite it gives two refracted rays. This phenomenon is 

called double refraction. 

When a ray of light is incident on the calcite 

crystal, it is refracted along two paths inside the 

crystal i) along BC (angle of refraction r2) and 

ii) along BD (angle of refraction r1). One  
 

ray obeys Snell’s law and it is called ordinary ray (O- ray) the other ray which doesn’t obey Snell’s 

law is called extra ordinary ray (E- ray). These two rays emerge out along DO and CE, which are 

parallel. Velocity of O- ray is the same as that of the incident ray, while the velocity of E- ray depends 

on its direction of travel thru the crystal. 

 According to Huygen’s, from the disturbance of the particels two types of wave fronts are produced. 

For the O- ray, the velocity of light is the same in all directions and the wavefront is spherical. And for 

E- ray, the velocity varies with the direction and the wavefront is an ellipsoid. There are two points 

where these two wavefronts touch each other. The line joining these two points is the optic axis. Based 

on the refractive index of E- ray (μe) there are two kinds of uniaxial crystals: +ve crystals and –ve 

crystals. 

             In +ve crystals the elliptical wavefront is 

surrounded with circular wavefront. In this μe > μo.                  

 Ex: ice, Quartz etc., 

 In –ve crystals the spherical wavefront is 

surrounded with elliptical wavefront. In this μe < μo.                  

Ex: Calcite, Tourmaline etc., 
 

Quarter - wave plate: It is a uniaxial doubly refracting crystal plate, cut with its axis parallel to the 

refracting faces, and can produce a phase difference of π/2 or a path difference of λ/4 between the 

ordinary and extra-ordinary rays. 

  When a plane polarised light falls normally on a crystal of this type, it splits up into ordinary 

and extra ordinary plane polarised lights. They travel along the same paths but with different velocities. 
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The velocity of E- ray is greater than the velocity of O-ray. As a result a phase difference is introduced 

between them. 

  Let t be the thickness of the plate. If μ0 and μe be the refractive indices of the crystal for O- ray 

and E- ray, then the path difference between O- ray and E- ray is (μ0 - μe)t  (   μ0 > μe) 

For a quarter wave plate this distance should be λ/4 

 (μ0 - μe)t  =  λ/4 

or   t = λ/ 4(μ0 - μe) 

 For positive crystal,    t = λ/ 4(μe – μ0) 

 
 

 

Half wave plate:  
doubly refracting crystal plate, cut with its axis parallel to the refracting faces, and can produce a phase 

difference of π or a path difference of λ/2 between the ordinary and extra-ordinary rays. 

  When a plane polarised light falls normally on a crystal of this type, it splits up into ordinary 

and extra ordinary plane polarised lights. They travel along the same paths but with different velocities. 

The velocity of E- ray is greater than the velocity of O-ray. As a result a phase difference is introduced 

between them. 

  Let t be the thickness of the plate. If μ0 and μe be the refractive indices of the crystal for O- ray 

and E- ray, then the path difference between O- ray and E- ray is (μ0 - μe)t  (μ0 > μe) 

For a quarter wave plate this distance should be λ/2 

 (μ0 - μe)t  =  λ/2 

or   t = λ/ 2(μ0 - μe) 

 For positive crystal,    t = λ/ 2(μe – μ0) 

 

Nicol’s Prism:  

Principle: When an ordinary light is transmitted through a calcite crystal, it splits into O- ray and E- 

ray which are completely plane polarised with vibrations in two mutually ┴r directions. If one ray is 

eliminated by some means, then the emergent beam will be plane polarised. 

Construction:  A calcite crystal whose length is three times as its width is taken. The end faces of this 

crystal are grounded in such a way that the angle in the principal section becomes 680 and 1120 instead 

of 710 and 1090. And the crystal is cut into two pieces by a plane ┴r to the principal section as well as 
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the end faces PR and QS. The two cut surfaces are grounded and polished optically flat and then 

cemented together with Canada balsam. The refractive index of Canada balsam lies between the 

refractive indices for the O- ray and E- rays for calcite. For Sodium D lines, the values are μ0- ray = 

1.658,    μe- ray = 1.486   and   μCanada balsam = 1.55 

 

Working: when a beam of light AB enters the faces PR in direction Parallel to the long side, it is 

doubly refracted into two plane polarised beams BO (O– ray) and BE (E- ray).    Since μCanada balsam < 

μ0, Canada balsam acts as a rarer medium for O- ray and denser medium for E- ray. If the angle of 

incidence of O- ray at the calcite-balsam surface becomes greater than the corresponding critical angle 

(690) then the O- ray is completely reflected at calcite-balsam surface and is absorbed by the tube 

containing the Nicol’s prism. Now, critical angle of O-ray with respect to Canada balsam is  

Sin c = 1.658/1.550 

Which implies that ; C =  Sin−1(1.550/1.658) = 69°              ∴C=69° 

The angle of incidence on Canada Balsam depends upon the angle which A’B makes with blunt edge 

BC’ and also on breadth of length ratio of the crystal. This was the only reason that length of crystal 

is chosen thrice of breadth and natural angle 71° is reduced to 68°. Because by doing so, 0-ray falls 

on Canada Balsam layer at an angle greater than critical angle C so it is totally internally reflected and 

absorbed, whereas E-ray is transmitted. The transmitted extraordinary ray is plane polarised having 

vibrations parallel to principal section of the Nicol prism. Thus, Nicol prism act as a polariser 

 

Note: If the angle of incidence on the face PR is greater than 140, then the O- ray will strike the balsam 

layer at an angle less than the critical angle and so will be transmitted. 
 



38 
 

Uses:  Nicol’s prism can be used both as polariser and analyser. When two Nicol’s are arranged co-

axially as shown in fig., the first Nicol which produces plane polarised light is known as polariser 

while the second which analyses the polarised light is known as analyser. When the two Nicol’s are 

placed with their principal sections parallel to each other as shown in fig(a), then the E- ray transmitted 

by one is freely transmitted by the other. If the second prism is gradually rotated, then the intensity of 

E- ray gradually decreases and when the two Nicol’s are at right angles to each other [fig(b)] no light 

comes from second prism. 

 

 

 

Production and detection of elliptically and circularly polarised light: 

When a plane-polarised light is incident normally on a Quarter wave plate on entering the 

crystal, it splits up into two components, O-ray and E-ray. Both the rays travel along the same direction 

but with different velocities. When the rays have travel through the thickness d of the crystal, a phase 

difference of δ is introduced between them. 

Theory: Let the amplitude of the incident plane polarised light on the crystal is A and it makes an 

angle θ with the optic axis. Therefore, the amplitude of the O- ray vibrating along PO is A Sinθ and 

the amplitude of the E- ray vibrating along PE is A Cosθ. Since a phase difference δ is introduced 

between the two rays after passing through a thickness d of a crystal, the rays after coming out of the 

crystal can be represented in terms of two simple harmonic motions at right angles to each other. 

For the E- ray,    x = A Cosθ. Sin (ωt + δ)  --- (1) 

For the O- ray,    y = A Sinθ. Sin ωt   --- (2) 

Substitute A Cosθ = a  and  A Sinθ = b      in eq’s (1) and (2) we get, 

x = a Sin (ωt + δ)   --- (3) 
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y = b Sin ωt    --- (4) 

From eq(3),  x/a = Sin ωt Cos δ + Cos ωt Sin δ    --- (5) 

From eq(4),  y/b = Sin ωt  and   Cos ωt =  1- y2/b2   --- (6) 

Substitute eq(6) in (5), x = y Cos δ +  1- y2 . Sin δ 
    a     b                   b2 

 
x      y Cos δ =  1- y2 . Sin δ 

    a      b                    b2 

Squaring and rearranging 

    x2 + y2 – 2xy Cos δ = Sin2 δ   --- (7) 
a2    b2     ab 

This is the general equation of an ellipse. 

Special Cases.  

Case(1) :-  

  When δ = π / 2, Cos δ = 0, Sin δ = 1 

From eq(7),    x2 + y2  = 1 
a2    b2      

 
This represent the equation of a symmetrical ellipse. The emergent 

light in this case will be elliptically polarised  if a = b. The vibrations 

of the incident plane-polarised light on the crystal should not make 

an angle of 450 with the direction of the optic axis. 

Case (2):- 

   When δ = π / 2 and a = b 

From eq(7),    x2 + y2  = a2 

 

This represents the equation of a circle of radius a. The emergent 

light will be circularly polarised. Here the vibrations of the incident 

plane-polarised light on the crystal make an angle of 450 with the 

direction of the optic axis. 

  
 

Detection of Circular and elliptical polarized light :- 
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Circular polarized light – The original sample is 

passed through a quarter wave plate and the 

emergent light is analysed by a Nicol which is 

rotating about the emergent light as the axis. If the 

intensity varies from zero to maximum the given 

sample is circularly polarized and at the same time 

the original sample intensity should not be 

changed when we analysed by a rotating Nicol 

 
Elliptical polarized light - The original sample is 

passed through a quarter wave plate and the emergent 

light is analysed by a Nicol which is rotating about the 

emergent light as the axis. If the intensity varies from 

zero to maximum the given sample is circularly 

polarized and at the same time the original sample 

intensity should be changed but never completely 

extinguished when we analysed by a rotating Nicol. 

Optical activity: Certain substances like quartz, sugar crystal etc., rotate the plane of vibration of a 

plane polarised light passing through them. In fig. a quartz crystal on which plane polarised light is 

incident with its plane of vibration parallel to its optic axis is shown. When the plane polarised light 

travels inside the crystal its plane of vibration is slowly rotated about the direction of propagation. In 

the emergent light, the vibrations are in some other plane. This rotation of plane of vibration can be 

explained with the following experiment. In fig(a) two Nicol’s are set in a crossed position. The field 

of view is dark. Now a quartz plate cut with its faces parallel to the optic axis is introduced in between 

two Nicol’s[fig(b)], the field of view is not dark. But by slightly rotating the second Nicol N2 the field 

of view is again dark. The light emerging from quartz is still plane polarised but the plane of 

polarisation has rotated through certain angle. 

 The property of rotating the plane of vibration of plane polarised light about its direction of 

travel by some crystal is known as optical activity. 
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 Those substances like quartz, sugar in 

solution, cinnabar etc., which rotate the plane of 

vibration (and also of polarisation) are known as 

optical active substances. 
 

There are two types of optical active substances. The substances which rotate the plane of polarisation 

in clock wise (when looking against the direction of light) are called as dextro-rotatory or right 

handed [ex:- Quartz crystal, cane sugar].  

The substances which rotate the plane of polarisation in the anti-clock wise direction are called as 

leavo-rotatory or left handed [ ex:- fruit sugar]. 

Specific rotation: 
The specific rotation of a substance at a particular temperature and for a given wavelength of light is 

defined as the rotation produced to the plane of polarisation of a plane polarised light by a decimetre 

(10cm) length of liquid when the concentration of active substance is 1 gram per cc of solution.  

3

degrees

.
s

lXc dmXg cm

    

Polarimeter: 
A polarimeter is an optical instrument used for the determination of the optical activity of certain 

solids, liquids, and solutions by measuring the angle of rotation of polarized light as it passes through 

them. The measured rotation angle can be used to calculate the concentration of sugar solution, 

peptides, and volatile oils. 

Laurent’s Half Shade Polarimeter (Saccharimeter) 
 
Principle:  When the polarizer is used to find the optical rotation of sugar solution, then such a 

polarimeter is known as Saccharimeter. If the specific rotation of the sugar is known, the 

concentration of the sugar in the solution can be estimated. 

Construction: It consists of two Nicol prisms N1 and N2, N1 acts as polarizer while N2 as analyzer. 

Both are placed at some distance apart. N2 is capable of rotation with respect to the common axis of 

N1 and N2. There is an half shade plate (HSP) having half-wave plate of quartz Q which covers one-

half of the field of view of the telescope while the other half G a glass plate which absorbs the same 

amount of light as the quartz plate and is placed after N1. An optically active substance (sugar solution) 

is filled in the tube and closed with cover slips and metal covers and introduce between N1 and N2. A 

telescope is placed after N2 and is focussed on HSP. 
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Working: A monochromatic light is incident on the lens L which renders into parallel beam. The 

unpolarized light after passing through the Nicol prism N1 becomes plane polarized with its vibrations 

in the principal plane of N1. The plane polarized light now passes through the HSP and then through 

polarimeter tube T which contains the optically active solution. The emergent light from tube on 

passing through the analyzer N2 can be viewed through the telescope. 

 The tube is filled with pure water without bubbles and placed in tis position. Now, focus the 

telescope on the HSP and the analyzer is rotated till the field of view of the telescope is bright i.e., 

both the halves HSP should be equally bright. The position of the analyzer is noted on the circular 

scale S. The tube is filled with sugar solution of known concentration without bubbles and placed it 

in the same position. The analyzer is now adjusted until the field of view of the telescope is again 

equally bright. The new position of the analyzer is noted on the circular scale. The difference of the 

two readings will give the angle of rotation. From the known values of ‘l’ and ‘c ‘, the specific 

rotation, is calculated using the relation:   

s
lXc

   

Now, the tube is filled with sugar solution of unknown concentration without bubbles and placed in 

the same position. The analyzer is now again adjusted until the field of view of the telescope is again 

equally bright. The new position of the analyzer is again noted on the circular scale. By knowing 

values of  and l, the concentration of sugar solution can be calculated using the following formula: 

c
lX s




  
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UNIT IV – ABBERRATIONS 

 
Aberration: The deviations from the actual size shape and positions of an image as calculated by 

simple equations are called chromatic aberrations 

The defects are mainly 

Due to of light: If the light is not monochromatic as (WHITE) then the image becomes 

multicoloured and the defect is known as chromatic aberration. 

Due to optical System: Even with monochromatic light several defects in shape of image are found. 

They are five types 

(a) Spherical Aberration (b) Coma (c) Astigmatism (d) Distortion (e) Curvature 

Chromatic aberration 
The image of white object formed by a lens 

is coloured and blurred. This defect of 

image is known as chromatic aberration. 

The chromatic aberration is of two types.  
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(i) Longitudinal Chromatic aberration (or) Axial chromatic aberration 

(ii) Lateral chromatic aberration (or) Transverse chromatic aberration 

 

 
 Longitudinal Chromatic aberration  

The formation of images of different colours on 

different positions along the axis as knows a 

longitudinal or axial chromatic aberration. The 

difference between IV and IR is a measure of 

longitudinal chromatic aberration 

∴ longitudinal chromatic aberration = IR - IV  

 

Lateral chromatic aberration 

 

The images of different colours are formed of 

different sizes. This defect is known as Lateral 

chromatic aberration.  

𝑚𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =
ௌ௜௭௘ ௢௙ ௧௛௘ ௜௠௔௚௘

௦௜௭௘ ௢௙ ௧௛௘ ௢௕௝௘௖௧
  

=
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡
 

 

Calculation of Longitudinal chromatic aberration of a thin lens:  

 

Case (i) When the object is at infinite distance 

Case (ii) When the object is finite distance 

 

When the object is situated at infinity:  

The focal length f of a lens is given by   
1 2

1 1 1
( 1)( )

f R R
    

If fV , fR and fY be the focal lengths of the lens for violet, Red and Yellow (mean) coloures and μV, 

μR and μY are the refractive indices respectively.  
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1 2

1 1 1
( 1)( )V

Vf R R
   ---------------(1) 

1 2

1 1 1
( 1)( )R

Rf R R
   ---------------(2) 

1 2

1 1 1
( 1)( )Y

Yf R R
   ---------------(3) 

Subtracting Equation from (2) from equation (1)  

1 2

1 1 1 1
( )( )V R

V Rf f R R
              ⟹    

1 1

1 1
( )( 1)( )

1
R V V R

Y
V R Y

f f

f f R R

  


 
  


 

2

( ) 1
( )

( 1)
R V V R

Y Y Y

f f

f f

 


 



          (∵ 2

V R Yf f f )     

2

1
( )R V

Y Y

f f

f f



( )

( 1)
V R

Y

 


 
  

  

R V Yf f f   ---- ------------(4) 

R Vf f  Longitudinal chromatic aberration 

The Longitudinal chromatic aberration for a thin lens for and object at infinity is equal to the 

product of its mean focal length and dispersive power of its lens. 

(ii) The object is situated at a finite distance 

For a thin lens the relation between u, v and f is given by  

1 1 1

u v f
       -----------------(5) 

When the object is placed at a fixed finite distance of image and focal length vary with colour. 

Hence, differentiating eq (5), we have 

2 2

dv df

v f
          ⟹     

2 2

dv df

v f
  -------------(6) 

If the image distances wan focal lengths for violet and red colours be vY, vR and fV, fR respectively, 

then  

R Vdv v v   and R V Ydf f f f      {from eq (4)} -------------(7) 

Substituting the values of dv and df  from eq(7) in eq (6) we have 

2 2
R V Y

Y y Y

v v f

v f f

 
           {∵v = vy and f = fY (for yellow colour)} 

R V Yf f f   
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2
R V y

Y

v v v
f


   ----------------(8) 

Longitudinal chromatic aberration depends upon  

(a) dispersive power of the lens material 

(b) mean focal length fY 

(c) the image distance for mean ray vY which depends upon u, the object distance 

 

ACHROMATISM OF LENSES: 

When the two lenses are placed in such a way that the image formed by them is free from chromatic 

aberration, the combination of lenses is called as chromatic combination and the phenomenon is 

known as achromatism. The minimization or removal of chromatic aberration is known as 

achromatism. 

It is possible by a combination of a suitable convex lens with a concave lens can free from chromatic 

aberration. Such combination is known as achromatic doublet. To achieve achromatic doublet a crown 

glass convex lens of low focal length (i.e., high power) and flint glass concave lens of greater focal 

length (i.e., low power) are used. The conditions of achromatism in two important cases: 

(a) When two lenses are in contact with each other (used in microscopes and telescopes as 

objectives) 

(b) When two lenses are separated by a distance (used for the eyepieces of optical instruments) 

Case (1) Achromatism for two lenses in contact:  

Achromatic doublet is formed in such a way that all colors come to focus at one point, i.e., all colors 

have the same focal length. i.e., focal length of chromatic doublet is independent of the refractive 

index μ.  

For a single lens 
1 2

1 1 1
( 1)( )

f R R
   ---------------(1) 

The change in focal lengths corresponding to a change in refractive index can be obtained by 

differentiating equation (1) 

1 2

1 1 1
( ) ( )d d

f R R
   --------------(2) 

Dividing equation (2) by equation (1)  

1
( )

1

d
fd

f







      ⟹          
1 1

( ) ( )
1

d
d

f f







= 
f


 --------------(3) 
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Let f1 and f2 be the focal lengths of the two lenses in contact and ω1 and ω2 are dispersive powers 

of lenses respectively. If F be the focal length of the combination, then 

1 2

1 1 1

F f f
  ------------(4) 

Change in (1/F) can be obtained by differentiating 

Eq.(4)  

1 2

1 1 1
( ) ( ) ( )d d d
F f f

   

From Eq.(3) 1

1 1

1
( )d

f f


 ;                  2

2 2

1
( )d

f f


  

1 2

1 2

1
( )d
F f f

 
   --------------(5) 

For achromatic combination F and hence (1/F) should not change with colour. i.e., d(1/F) = 0 

1 2

1 2

0
f f

 
   

The ratio of the focal lengths of the two lenses in an achromatic doublet is given by 

 

 

This is required condition.  

Case (ii) Achromatism for two lenses seperated by a distance 

Consider two convex lenses of focal lengths f1 and f2 separated by a suitable distance x. The material 

of the two lenses is the same hence their dispersive power is same. If F is the combined focal length 

of two lenses, then 

1 2 1 2

1 1 1 x

F f f f f
    ----------(1) 

The change in 
ଵ

ி
 as the refractive index changes can be obtained by diff. Eq.(1) 

1 2 1 2

1 1 1
( ) ( ) ( ) ( )

x
d d d d

F f f f f
    

1 2 2 1 1 2

1 1 1 1 1
( ) ( ) ( ) ( ) ( )

x x
d d d d d

F f f f f f f
    ---------------(2) 

1 1

2 2

f

f




   
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We know that 1

1 1

1
( )d

f f


 ;                  2

2 2

1
( )d

f f


  

1 2 1 2

1 2 2 1 1 2

1
( )

x x
d

F f f f f f f

   
    -------------(3) 

For an achromatic combination the focal length F or (
ଵ

ி
) should not change with colour. i.e., d(

ଵ

ி
)=0 

1 2 1 2

1 2 2 1 1 2

0
x x

f f f f f f

   
     

1 2 1 2

1 2 2 1 1 2

x x

f f f f f f

   
           ⟹    1 2 2 1 1 2

1 2 2 1

( )f f
x

f f f f

    
         

1 2 2 1

1 2

f f
x

 
 





------------------(4) 

When the two lenses are made of same material i.e., ω1 = ω2=ω. Then 

2 1 2 1

2

f f f f
x

   
  
 

 


    ⟹     ------------(5) 

The seperation between the two lenses must be equal to the mean of focal lengths of the two 

lenses. 

SPHERICAL ABERRATION  

The rays of light from the distant object after passing through the lens at the margin of the lens [known 

as marginal rays] converge at a point Im close to the lens. Similarly, the rays of light passing through 

a region close to the axis [known as paraxial rays] converge at a point Ip, away from the lens. This 

results in an image that spreads into a region from Im to Ip along the axis and from A to B 

perpendicular to the axis. This defect of the image due to the rays passing through different section 

of the lens, even with monochromatic light, is known as spherical aberration of the lens. 

 The spread of the image along the 

axis, [dx] is known as longitudinal spherical 

aberration. The image formed at AB is a 

circle with least diameter and at this position 

the best image is formed. This circle is called 

the circle of least confusion. The radius of the 

circle of least confusion measures Transverse 

spherical aberration. 

1 2

2

f f
x


  
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Note: The spherical aberration in a convex lens is taken to be positive as the marginal image is 

formed near the lens than the paraxial image. In the case of concave lens, the spherical aberration 

is taken to be negative as the marginal image is formed to the right side of the paraxial image. 

SPHERICAL ABERRATION BY PLANE REFRACTING SURFACE 

Consider a plane surface AB perpendicular to X-axis and separating the two media as shown in fig. 

Let the refractive indices of two sides be μ1 and μ2 such that μ2> μ1. Suppose P be an object point on 

the X-axis at a distance -x0 from the origin O. In the figure PQ is a ray incident on the surface AB at 

height h from O. i is the angle of incident. QR is the refracted ray in denser medium. The refracted 

ray appears to emerge from a point P1 on the axis. Hence, P1 is the image of P. The distance of P1 

from O is -x1 

From △P1QO, 
1

tan
h

r
x




or 
2

1 1
1

(1 sin )sin cos

cos sin sin

h rr h r
x h x

r x r r

 
      


 

2

1 2

sin
1

sin

h i
x

r 


  -----> (1) 2

1

sin sin
sin

sin

i i
r

r

 
 

 
    

 
  

From fig 
2 2

0

sin
h

i
h x




--------> (2)          

Substituting, the value of sin i from eq (2) in eq (1) we get  

 

2 2

2 2 2 2
0 0

1 2 22 2
0

1 1
sin

h h
h x h xh h

x
i h h x 




   
              


 

   
2

2 2
1 0 2 2 2

0

1
h h

x h x
h h x




     
  

⟹

1/2
2 2 2

1/2 1
1 0 2 2 2

0 0 0

(1 ) 1 (1 )
h h h

x x
x x x

          
   

 

1/2
2 2 2

1 0 2 2 2 2
0 0 0

(1 ) 1 1
2

h h h
x x

x x x



         
   

(using binomial expansion) 

1/22 2 4

1 0 2 2 2 2 4
0 0 0

(1 ) 1
2

h h h
x x

x x x


 
 

     
 

⟹

1/22 2

1 0 2 2 2
0 0

(1 ) 1
2

h h
x x

x x



 

    
 

(neglecting higher terms 

h4) 
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2 2 2 2 4

1 0 02 2 2 2 2 2 2 4
0 0 0 0 0

(1 ) 1 1
2 2 2 2 2

h h h h h
x x x

x x x x x
 

  
   

           
   

(neglecting higher terms h4 and 

taking common 
2

2
02

h

x
) 

2

0 2 2
0

1
1 (1 )

2

h
x

x



 

    
 

2

0 2
0

1
(1 )

2

h
x

x




    -----> (3) 

For Paraxial rays, i.e., in the limiting case when h→0, eq (3) reduces 1 0x x  -----> (4) 

Equations (3) and (4)   
 
 
 
The negative sign shows that the non-paraxial rays appear to diverge from a point which is still further 
away from the paraxial image point. 
 
SPHERICAL ABERRATION DUE TO SPHERICAL SURFACE 
AB is a spherical surface of radius of curvature R. Let an incident ray parallel to the principal axis 

meets the spherical surface at a height h, from the axis. The refracted ray intersects the axis at a point 

Fh. hence OF is equal to the focal length f h 

From Figure fh = R+C Fh ------> (1) 

Consider △CPFh 

sin

sin sin( ) sin( )
h

h

CF R R r
CF

r i r i r
  

 
 

sin sin

sin cos cos sin sin cos cos sinh

R r R r
CF

i r i r r r i r
 

 
( sin

sin
i

r  ) 

             
cos cos

R

r i



--------> (2) 

Substituting the value of CFh from eq (2) in eq (1) we get 

        
cos cosh

R
f R

r i
 


  ⇒ 

1
1

cos coshf R
r i

 
   

--------> (3) 

For paraxial rays, h→0 ∴ cos i and cos r →1. In this case ( 1)p
Rf 

  ------>(4) 

The change in focal length for h zone as compared to axial zone is given by 

1
1( 1) cos cosh p h

Rf f f R
r i


 

 
        

⇒
1

1
1 cos cos

R
r i


 
 

    
    

                       
1 1

1 cos cos
R

r i 
 

    
---------> (5) 

Spherical deviation = 
2

2
0

1
(1 )

2

h

x




   
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This represents the longitudinal spherical aberration. The approximate value of spherical aberration 
can be calculated as 
From figure sin i = h/R ∴  sin r = h/μR (∵ sin i/sin r = μ) 

2 2 2 1/2 2 2cos 1 sin (1 / ) 1 / 2i i h R h R       
1/2

2 22
2 2 2 2cos 1 sin 1 1

2
h hr r

R R 
           
   

 

Substituting the values in (5) we get 

2 2 2 2 2

1 1

1 (1 2 ) (1 2 )hf R
h R h R  

 
       

 

 

where 
( 1)

R
fp







 ------------ > (6) Solving we get                                         

 
Equation (6) gives the approximate value of spherical aberration due to a spherical surface. 

 

Methods of reducing spherical aberration: 

(1) By using stops: In this case, the stops used will either allow the paraxial rays or marginal rays. 

Usually, the stop is used to avoid the marginal rays. This brings paraxial and marginal images 

close to one another thereby reducing the spherical aberration. 

(2) By the use of Plano-convex lens:  In a lens, the deviation produced by the lens is minimum, 

when the deviation is shared equally between the two surfaces of the lens. This is achieved in a 

Plano-convex lens by arranging convex side facing the incident or emergent rays whichever are 

more parallel to the axis as shown in the following figure (2) 

 

(3) By the use of crossed lenses: It is theoretically known that the lenses have minimum spherical 

aberration when the parallel rays fall of the lens having their radii of curvature r1 and r2 bearing a 

ratio, which satisfies the following condition. 1

2

(2 1) 4

(2 1)

r

r

 
 

 



 

In the above equation, μ is the refractive index of the material of the lens. For a lens of μ = 1.5, the 

ratio 1 2 1 6r r   . A lens having its radii of curvature satisfying this condition is known as a crossed 

2

22( 1)h
p

h
f

f
 


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lens. 

(4) By using two Plano-convex lenses separated by a suitable distance: When the two plano-convex 

lenses are separated at a suitable distance, the total deviation is divided equally between the two lenses 

and the total deviation is minimum. This reduces the spherical aberration to minimum.  

The necessary condition is derived as follows.   

With reference to figure (4), we can write,  

BAK  BF2O2     , Also, F1 BF2   BF2  F1  δ 

 
So that F1F2 = F1B =F1O2        Or      O2F1 = ½ O2F2 
 
Since F2 is the virtual object of the real image F1 and using the lens formula for the second lens, we 

can write the equation
2

1 1 1

v u f
  ----- > (1) 

In this equation 1
1 &

2

f d
u f d v


   ------> (2)  

Substituting for ‘u’ and ‘v’ and simplifying, we get

1 1 2

1 2

2 1

2 1 1

1 1

f d f d f

f d f

f f d

  
 




  

 -------- > (3) 

Or 1 2d f f  ------ > (4) 

Eq (4) gives the condition for minimum spherical aberration 

(5) By using suitable concave and convex lenses in contact: Since spherical aberration produced by 

convex lens is positive and that produced by a concave lens is negative, a suitable combination of 

convex and concave lens will minimize the spherical aberration. 

COMA When the point object is 

situated slightly off the axis, the image 

of the point object formed by the lens is 

found to have an egg-like (or comet 

like) shape. The defect in the image is 

called coma after its shape. 
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Minimisation: 

1. Coma can be reduced to a certain 

extent by the use of proper stop placed 

at a suitable distance from the lens. 

2. Coma may be minimized by 

designing lenses of suitable shapes 

and materials. 

For Ex. A lens with μ=1.5 and R1/R2=-1/9 forms an image of an object at finite distance sufficiently 

free from Coma. 

3. Abbe showed that lenses are completely free from spherical aberration and coma by the following 

sine condition is satisfied. 1 1 1 2 2 2sin siny y     

where µ1, y1, and sin θ1 refers to the refractive index, height of the object above the axis and the slope 

angle of the incident ray of light respectively. Similarly, µ2, y2, and sin θ2 refers to the corresponding 

quantities in the image space. The magnification of the image is given by y2/y1. When the medium on 

both sides is the same, then the above condition reduces to  

2 1

1 2

sin

sin

y

y




  

Elimination of the coma is possible if the lateral magnification y2/y1 is the same of all rays of light, 

irrespective of slope angles θ1, θ2. Thus, coma can be eliminated if sin θ1 / sin θ2 = constant, because 

µ1/ µ2 is a constant. A lens that satisfies the above condition is called an aplanatic lens. 

 

ASTIGMATISM: Astigmatism is to imagine a lens (or mirror) whose surfaces are not exactly 

spherical but for which the radius of curvature (and hence focal length) in one plane is different from 

the radius of curvature in a plane at right angles to the first. 

 

As you move along the optical axis, the image changes from a horizontal line to a vertical line in a 

sequence that looks something like this: 

 

Somewhere about halfway between the two linear images is the “circle of least confusion”. 
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Minimization 

1. The astigmatism due to large inclination of the rays with the axis of the lens. Therefore, if the rays 

making large angles with the axis are cut off the defect can be eliminated. It can be reduced to a certain 

extent using proper stop placed at a suitable distance from the lens  

2. Suitable convex and concave lens separated at a suitable distance may be used to reduce 

astigmatism. 

Curvature of the field 

The image of an extended object due to a single lens is not a flat one but it will be a curved surface. 

The central portion of the image nearer the axis is in focus but the outer regions of the image away 

from the axis are blurred. This defect is called the curvature of field. 

Distortion 

The Failure of a lens to form a point image due to a point object is due to the presence of spherical 

aberration, coma and astigmatism. The variation in the magnification produced by a lens for different 

axial distances results in an aberration called Distortion. 
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FIBER OPTICS 

Introduction:- Fiber optics is the branch of science and engineering concerned with optical 

fibers. 

In case of electromagnetic communication, the information is normally carried out in the form of 

radio waves and microwaves, through copper wires and co-axial cables. However, the 

information carrying capacity of these wires is restricted, due to their limited bandwidth and is 

not sufficient, as per the needs of modern communication techniques. 

 If light waves are used instead of radio waves, or microwaves, the number of signals 

transmitted can be increased enormously. 

 By using copper or aluminium wires one can at most send 48 simultaneous telephone 

conversations where as in an optical communication system transmission of about 15 million 

simultaneous telephone conversations through one hair thin optical fiber is possible. 

 The first useful optical fiber (doping of Silica glass with titanium) was invented in 1970 by 

Maurer, Keck, Schultz and Zimar. 

Advantages of Optical fibers over wires: 

1) Low loss 

2) Large data-carrying capacity (Thousands of times greater) 

3) High electrical resistance, so safe to use near high voltage equipment or between area with 

different earth potentials. 

4) Light weight and 

5) Signals contain very little power. 

Disadvantages of Optical fibers over wires: 

1) Higher cost 

2) Need for more expensive optical transmitters and receivers. 

3) More difficult and expensive to splice than wires and  

4) Cannot carry electrical power to operate terminal devices. 

Optical fibers:  

Principle: The optical fibers are based on the principle of *total internal reflection (TIR).  
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* Total Internal Reflection (TIR): - If a light ray is incident at the interface of a denser medium         

(n2 > n1), the refracted ray will bend towards the normal. On the other hand, if a ray is incident at 

the interface of a rarer medium (n2 < n1) then the ray will bend away from the normal. The angle 

of incidence, for which the angle of refraction is 900,is known as the critical angle and is denoted 

by c. Thus, when 1 = c = Sin-1 (n1/ n2)  --- (1) 

2 = 900. When the angle of incidence exceeds the critical angle (i.e., when 1 > c), there is no 

refracted ray and we have what is known as total internal reflection (TIR). 

Definition:- An optical fiber is a hair thin cylindrical tube of glass or any transparent dielectric 

medium for transmitting light. 

It is designed to guide light waves along the length of the fiber with the help of successive total 

internal reflections from sidewalls of the fiber. 

 

Construction: - An optical fiber consists, in general, the following three regions: 

i) Innermost region, which is the light guiding region, called core. It is made of pure Silicon dioxide 

(SiO2) 

ii) Core region is surrounded by a middle region called Cladding. The refractive index of cladding 

(n2  1.45) is always lower than that of the core (n1  1.465). The cladding is usually pure silica 

while the core is usually silica doped with germanium. 

iii) The outermost region is called sheath (made of Plastic or Teflon). The sheath protects the core 

and cladding from moisture, abrasion contamination and to give mechanical strength to fiber. 

Basic purpose of cladding is to confine the light to 

the core. As the light falling on core and striking core 

cladding interface at an angle greater than the critical angle 

will be reflected back to the core. 

Main function of the optical fiber is to accept 

maximum light and transmit the same with minimum 

attenuation or reduction. 
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Propagation of light through optical fiber: 

 

Consider the figure, which is a section of the optical fiber. The refractive indices of the core 

and the cladding are n1 and n2 respectively. The fiber is normally in air (n0=1) but could also be in a 

medium of refractive index n0. The axis of the cylindrical structure is the optical axis. A ray is incident 

at an angle ‘ i ‘at the entrance face and refracted into the core. It then strikes the core-cladding interface 

at a certain angle. If this angle exceeds the critical angle, it is totally reflected and strikes the interface 

on the other side of the axis. Here it is again totally reflected. This process is repeated till the ray 

emerges out of the fiber at the other end. The ray is thus guided by total internal reflection.  

The angle of incidence at the entrance face for which the ray strikes the core-cladding interface at the 

critical angle is called the Acceptance angle or cut-off angle. The ray is guided for all the angles of 

incidence smaller than the acceptance angle at the entrance face. However, if the angle of incidence 

at the interface is less than the critical angle, both reflection and refraction takes place. Due to 

refraction at each incidence on the interface, the light beam dies off over a certain distance. There is 

no guidance.  

Types of optical fibers: In an optical fiber light travels as an electromagnetic wave and all the 

waves moving in directions above the critical angle will be trapped in the fiber due to TIR. However 

all such waves do not propagate through the fiber, and only certain ray directions are allowed for 

propagations. These allowed directions correspond to modes of fiber. 

 The light ray paths along which the waves are in phase inside the fiber are called modes. 

Number of modes, a fiber can support depends on the ratio d/ where d is the diameter of the core 

and  is the wavelength of the wave transmitted.] 

Optical fibers are in general of two types: 

i) Single Mode Fiber (SMF)   and  ii) Multi Mode Fiber (MMF) 

A single mode fiber has a smaller core diameter (<10m) and can support only one mode of 

propagation.  
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For intercity cabling (i.e., for long distances) and highest speed Single mode fibers are used. 

Advantages: Low loss, data rate upto 40 GB/Sec. 

Multi mode fiber (MMF) has a large core diameter (50m to 100m) and can support a large 

number of modes. 

 For short distances MMF’s are used. 

Multi mode fibers are further classified on the basis of index profile. [Index profile is a graph of 

refractive index (along X-axis) and distance from the core (along Y-axis)]. Index profile of a MMF 

can be either step index (SI) type or graded index (GRIN) type. Index profile of SMF is usually a 

step index type. 

 

Single mode step index fiber – It consists of a very fine thin core (of radius ‘a’) of uniform refractive 

index surrounded by a cladding (of radius ‘b’) of refractive index lower than that of the core. Since 

the refractive index abruptly changes at the core-cladding boundary, it is known as step index fiber. 

A typical SMF has a core diameter of 4m. Light travels along a single path. 

 

Multi mode step index fiber – It is similar to the single mode step index fiber with the exception that 

it has a large diameter (~ 100 m). Core diameter is very large as compared to the wavelength of 

transmitted light. Light moves in zigzag paths along MMF. Typical structure along with profile of 

step MMF is shown in figure. 

 

Graded index fiber (GRIN) – A GRIN is a multi mode fiber, which has concentric layers of 

refractive indices, which means that the refractive index of the core varies with distance from the 
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fibers axis. i.e., it has high value at the center and falls of rapidly as the radial distance increases 

from the axis. In case of GRIN fibers, acceptance angel and numerical aperture diminish with 

increase of radial distance from the axis. 

 

Basic principle of Optical fibre communication 

 

At the transmitting end, the transmitted information (such as voice) is first converted into an electrical 

signal, and then modulated onto the laser beam emitted by the laser, so that the intensity of the light 

changes with the amplitude (frequency) of the electrical signal and passes through the optical fiber. 

The principle of total reflection is transmitted; at the receiving end, after receiving the optical signal, 

the detector converts it into an electrical signal, and after demodulation, restores the original 

information. 

Optical communication utilizes the principle of total reflection. When the injection angle of light 

satisfies certain conditions, light can form total reflection in the optical fiber, thereby achieving the 

purpose of long-distance transmission. The light guiding properties of an optical fiber are based on 

total reflection of the light ray at the core and cladding interfaces, limiting light transmission in the 

core. There are two types of light in the fiber, namely meridional and oblique rays. The meridional 

rays are the light rays on the meridional plane, and the oblique rays are the light that is transmitted 

through the fiber axis. 

Electrical Output 
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Unit V     -    LASERS 
A LASER (Light Amplification by Stimulated Emission of Radiation) is an optical source that emits 

photons in a coherent beam..  

 The process of particle transfer from normal state corresponding to minimum energy of the 

system to a higher energy state is termed as excitation and the particle itself is said to be excited. In 

this process the absorption of energy from the external field takes place. 

The time during which a particle can exist in the ground state is unlimited. On the other hand, the 

particle can remain in the excited state for a limited time known as lifetime.  

The lifetime of the excited hydrogen atom is of the order of 10-8sec. Their exist, some excited states 

in which the lifetime is >10-8 sec. These states are called as metastable. 

 The basic principle involved in laser action is the phenomenon of stimulated emission. 

There are three kinds of electromagnetic radiations between two energy levels E1 and E2 in an atom. 

i) Induced absorption:- If the atom is initially in the 

lower state E1 it can be raised to E2 by absorption 

of a photon of energy E2- E1 = h . This is called 

induced absorption.  

After being in the excited state, the particle returns to the ground state. 
 

ii) Spontaneous emission:- If the atom is initially in 

the upper state E2, it can drop to E1 by emitting of a 

photon of energy h. This process is known as 

Spontaneous emission.   

The spontaneous emission depends on the type of the particle and type of transition but is 

independent of outside circumstances.  

The waves coincide neither in wavelength nor in phase. Thus the radiation is incoherent and has a 

broad spectrum. 

 The rate of spontaneous emission is proportional to the number of atoms in the excited state. 
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iii) Stimulated emission:- If an atom is already in 

the excited state of energy level E2 whose ground 

level energy is E1, at this moment, a photon of 

energy h = E2- E1 is incident on the excited 

atom, the incident photon stimulates a similar  

photon from the excited atom. Now the atom returns to the ground state. 
 

This type of emission is called as stimulated emission. 

It is coherent with the stimulating incident radiation. It has the same frequency & phase as the 

incident radiation. 

 The rate of stimulated emission depends both on the intensity of external field and also on 

the number of atoms in the excited state. 

 

Differences between spontaneous and stimulated emission: 

 

Spontaneous emission Stimulated emission 

1. Transition occurs from a higher energy level to 

a lower energy level. 

Transition also occurs from higher energy level to 

lower energy level. 

2. No incident photon is required Photon whose energy is equal to the difference of 

two energy levels is required. 

3. Single photon is emitted. Two photons with same energy are emitted. 

4. The energy of emitted photon is equal to the 

energy difference of two levels. 

The energy of the emitted photons is double the 

energy of stimulated photons. 

5. This was postulated by Bohr. This was postulated by Einstein. 

 

Population Inversion: The number of particles N2, i.e., population of higher energy level is less than 

the population N1 of lower energy level. Making the number of particles N2 more in higher energy 

level than the number of particles N1 in lower energy level (N2 > N1) is called as population 

inversion or inverted population. 
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 A system in which population inversion is achieved is called an active system. The method of 

raising the particle from lower energy state to higher energy state is called as pumping. A more 

common method of pumping is optical pumping. 

Einstein theory of Lasers (OR) Einstein’s Coefficients: 

Based on Einstein’s quantum theory of radiation one can get the expression for probability for 

stimulated emission to the probability for spontaneous emission under thermal equilibrium. 

Consider two energy levels E1 and E2 of an atomic system such that E2 > E1. Let N1 and N2 be the 

number atoms per unit volume present at the levels E1 and E2 respectively. In any rotation of 

frequency corresponding to the energy difference (E2-E1) fall on the atomic system it can interact 

with the matter in three distinct ways. 

 

I. Absorption: 

If ( )d    is the radiation energy per unit volume between the frequency range   and d  , then 

the number of atoms undergoing in absorption per unit volume per second from levels E1 to E2 = 

1 12( )N B                                                              -------------------- (1) 

Where B12 is the probability of absorption per unit time. 

II. Stimulated Emission: 

When an atom males trasition from E2 to E1, in the presence of external photon whose energy is 

equal to (E2-E1) stimulated emission takes place. Thus the number of stimulated emissions per unit 

volume per second and from levels E2 to E1= 2 21( )N B     ------------------- (2) 

where, B21 represents probability of stimulated emission per unit time. 

[radiative processes] 

(stimulated) 
absorption 

stimulated 
emission 

spontaneous 
emission 

B12N1ν) B21N2ν) A21N2 

E2 

E1 
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III. Spontaneous emission:  

An atom in the level E2 can also make a spontaneous emission by jumping into lower energy level 

E1 the number of atoms making spontaneous emission per unit volume per second from levels E2 to 

E1=N2A21                                                                                ----------------------------  (3) 

where A21 is represents probability of spontaneous emission per unit time. 

Under steady state condition 0
dN

dT
  

Number of atoms undergoing absorption per second = Number of atoms undergoing emission per 

second. 

Eq (1) = Eq (2) +Eq(3) 

1 12 2 21 2 21( ) ( )N B N B N A      

21

1
12 21

2

( )
( )

A
N

B B
N

  


                                    --------------------------    (4) 

From Boltzman distribution law  

1 2( ) / /1

2

BE E k T h kTN
e e

N
                                    ----------------------------    (5) 

Sub 1

2

N

N
 in eq (4) and using B12 = B21, we get 

21
/

21

( )
( 1)h kT

A

B e   


                                                ---------------------   (6) 

From Planck’s radiation law we have, 

3

3 /

8 1
( )

( 1)h kT

hn

e 

 





                                        ----------------------    (7) 

where n = refractive index of the medium 

           = wavelength of light in air. 
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Let m   be the wavelength of the medium, 

m n
                                                                ------------------------    (8) 

3 /

8 1
( )

( 1)h kT
m

h

e 

 





                                      -------------------------    (9) 

Comparing eq (6) and (9)   

21
3

21

8

m

A h

B




  

A21 and B21 are called Einstein’s Coefficients of spontaneous emission probability per unit time and 

stimulated emission probability per unit time respectively. 

For stimulated emission to be predominant we need, 

21

21

1
A

B
  

The function 
/

1

( 1)h kTe  
represents the ratio of stimulated emission rate to spontaneous emission 

rate. 

Characteristics of a laser: 

i) The light is coherent with all the waves exactly in phase with each other. 

ii) Laser beam hardly diverges. i.e., The laser rays are almost parallel. 

iii) The beam is nearly monochromatic. 

iv) The laser beam is extremely intense. The beam can produce a temperature of 104 oC at a 

focused point. 
 

Principle of operation of lasers: Consider a group of atoms all in the same excited state. A passing 

photon may cause stimulated emission in one of these atoms. This results in the emission of two 

photons. Each of these photons may cause induced emission in two other excited atoms. This 

process may continue in a chain reaction. The result will be an intense beam of photons moving in 

the same direction and all are coherent. 
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Ruby laser: The first successful laser utilized a ruby rod.  

Construction:- A ruby is a crystal of 

aluminium oxide Al2O3 in which some 

aluminium atoms are replaced by 

chromium atoms (Cr2O3). The active 

materials in the ruby are chromium ions 

Cr3+. In a ruby laser, a rod of 4cm length 

and 0.5cm in diameter is generally used. 

The two ends of the ruby rod are made 

perfectly parallel to each other.   

One end A is heavily silvered and the other end B of the rod is partially silvered. The rod is 

surrounded by a helical xenon flash tube, which provides the pumping light to raise the chromium 

ions to upper energy level. Only a part of the energy is used in pumping the Cr3+ ions while the rest 

heats up the apparatus. For these purpose a cooling arrangement (liquid nitrogen) is used. 

Working:- An energy diagram illustrating the operation principle of a ruby laser is shown in figure. 

In the fig. E1, E2 and E3 represent the energy levels of chromium ion. In normal state, the chromium 

ion is in lower level. When the ruby crystal is irradiated with light of xenon flash, the chromium 

atoms are excited and pass to upper level. Few excited atoms return to ground level E1 and other to 

level E2. The transitions E3  E2 are non-radiative 
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. i.e., the chromium atoms give part of their 

energy to crystal lattice in the form of heat. 

After few milliseconds, the level E2 becomes 

more populated than level E1 and hence the 

desired population inversion is achieved. The 

spontaneous transition may cause an induced 

transition (stimulated emission), which 

produces a photon. Photon traveling parallel to the axis of the tube (crystal) will start a cascade of 

photon emission while the photons traveling in any direction other than this will pass out of ruby.  

The ruby laser is an example of a three level laser. 

 The wavelength of out put beam is 6943 A0, The duration of out put flash is 300  sec and 

the Intensity of out put beam is 10,000 watt. 

Drawbacks: i) The Ruby laser requires high pumping power 

         ii) It is a pulsed laser.  

 

He – Ne Laser: The main drawback of Ruby laser is that the out put beam is not continuous though 

very intense. For the continuous laser beam, gas lasers are used. He- Ne laser (fabricated by Ali 

Javan and his associates in USA) is the first one to be operated successfully.  

Construction: The laser tube is approximately 5mm in diameter and 0.5m long. It contains helium – 

neon mixture, in the ratio 5:1 at a total pressure of about 1mm of mercury. 

The ends of the tube are plane and parallel. 

One end of the tube is heavily silvered and the 

other end is partially silvered. An electric 

discharge is produced in the gas mixture by 

electrodes connected to a high frequency 

electric source.  
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Working:  

 

The collisions of the He & Ne atoms with the electrons from the discharge excite (or pump) the 

helium & neon atoms to metastable states. Some of the excited He atoms transfer their energy to 

ground state Ne atoms by collisions. Thus He atoms help in achieving a population inversion in the 

Ne atoms. When a Ne atom passes spontaneously from the metastable state at 20.66eV to state at 

18.70eV, it emits photon. This photon travels through the gas mixture, and if it is moving parallel to 

the axis of the tube, is reflected back & forth by the mirror ends until it stimulates an excited Ne 

atom and causes it to emit a fresh photon in phase with the stimulating photon. This stimulated 

transition from 20.66eV level to 18.70eV level is the laser transition. This process is continued and a 

beam of coherent radiation builds up in the tube. When the beam becomes sufficiently intense, a 

portion of it escapes through the partially – silvered end. The excitation of He & Ne atoms occur all 

the time, unlike the pulsed excitation in ruby laser, the He-Ne laser operates continuously. 

Uses of laser: 

In consumer electronics, telecommunications, and data communications, lasers are used as the 

transmitters in optical communications over optical fiber and free space. They are used to store and 

retrieve data from compact discs and DVDs, as well as magneto-optical discs. Laser lighting 

displays (pictured) accompany many music concerts. 

In science, lasers are employed in a wide variety of interferometric techniques, and for Raman 

spectroscopy. Other uses include atmospheric remote sensing, and investigation of nonlinear optics 

phenomena. Holographic techniques employing lasers also contribute to a number of measurement 

techniques. Lasers have also been used aboard scientific spacecraft. 

In medicine, the laser scalpel is used for laser vision correction and other surgical techniques. 

Lasers are also used for dermatological procedures including removal of tattoos, birthmarks, and 

hair. 
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In industry, laser cutting is used to cut steel and other metals. Laser line levels are used in 

surveying and construction. Lasers are also used for guidance for aircraft. Lasers are used in certain 

types of thermonuclear fusion reactors. 

In law enforcement the most widely known use of lasers is for lidar to detect the speed of vehicles. 

Military uses of lasers include use as target designators for other weapons; their use as directed-

energy weapons is currently under research. 

Basic Principle of Holography 

An object is illuminated with a beam of coherent light [object beam]. Then every point on the surface 

of the object acts as a source of secondary waves. These secondary waves spread in all directions. 

Some of these waves can fall on a recording plate [holographic plate]. Simultaneously, another beam 

of same coherent light [reference beam] can fall on this holographic plate. In the holographic plate, 

both the beams combine, and interference pattern will be formed. This interference pattern is recorded 

on the holographic plate. The three-dimensional image of the object can be seen by exposing the 

recorded holographic plate [hologram] to coherent light. This is the principle of holography. 

Applications of holography 

1. The three-dimensional images produced by holograms have been used in various fields, such 

as technical, educational also in advertising, artistic display etc. 

2. Holographic diffraction gratings: The interference of two plane wavefronts of laser beams on 

the surface of holographic plate produces holographic diffraction grating. The lines in this grating are 

more uniform than in case of conventional grating. 

3. Hologram is a reliable object for data storage, because even a small broken piece of hologram 

contains complete data or information about the object with reduced clarity. 

4. The information-holding capacity of a hologram is very high because many objects can be 
recorded in a single hologram, by slightly changing ... 

 


